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A W H I T E H E A D  T H E O R E M  F O R  L O N G  
T O W E R S  OF S P A C E S  t 

BY 

E. DROR AND W. G. DWYER* 

ABSTRACT 

We show that one can construct the universal R-homology isomorphism 
K ~ E~X of Bousfield [1] by a transfinite iteration of an elementary homology 
correction map. This correction map is essentially the same as the one used 
classically to define Adams spectral sequence. This yields a topological charac- 
terization of the class of local spaces as the smallest s containing K(A,  n)'s and 
closed under homotopy inverse limfl. 

I. Introduction 

Suppose that R is a subring of the rational numbers or a finite field of the form 

Z/pZ, p prime. In [1] Bousfield showed that any space X has a functorial 

R-homology localization ; this is a space XR together with a map X ---> XR which 

is terminal, up to homotopy,  in the category of all maps X--> Y that induce 

isomorphisms on rood R homology. This paper  proves a "Whi tehead theorem"  

which is adapted to recognizing inverse limit constructions of XR. In particular, 

the theorem shows that X,~ can be obtained from X by transfinite iteration of an 

elementary homology approximation technique. 

1.1. Organization of the paper. For background purposes, Section 2 de- 

scribes in some detail our proposed construction for XR. Section 3 contains some 

preliminary algebra, and Section 4 has a statement and proof of the Whitehead 

theorem itself. The last section shows how the Whitehead theorem can be used 

to demonstra te  that the construction given in Section 2 actually works. 

1.2. REMARK. Section 2 is a straightforward at tempt to transpose the algeb- 

raic towers of [2, §3, §8] into geometry.  A less direct but more sophisticated 
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inverse limit construction of XR appears in [4]. Our work here ultimately 

depends on a small but essential collection of Bousfield's algebraic lemmas from 

[2, § 1-2, § 6-7]. 

1.3. Notation and terminology. The word space is used as a synonym for 

simplicial set ([5], [6]). The symbol R will always denote a fixed ring of the type 

described above; a space X is said to be R-Bousfield if it is H , ( -  ; R)-local in 

the sense of [1, §1], that is, if the natural map X--*XR is a homotopy 

equivalence. Similarly, a group 7r is called R-Bousfield if it is HR-iocal in the 

sense of [1, 5.1], and a ~--module M is R-Bousfield if it is HR-local as an 

(abelian) group and HZ-local [1, 5.3] as a 7r-module. 

In these terms, theorem 5.5 of [1] reads that a connected space X is 

R-Bousfield itt 7r~X is R-Bousfield and the higher homotopy groups of X are 

R-Bousfield as rr~X-modules. 

2. A construction of XR by successive approximation 

The idea of the construction will be to start with the simplest possible map (the 

map from X to a one-point space) and iteratively modify the range of this map 

until an R-homology isomorphism is obtained. 

2.1. The Dold-Kan construction. For any space X, R @ X will denote the 

mod R Dold-Kan constructon on X, that is, R Q X is the simplicial R-module 

which, for each n _-> 0, has as its set of n-simplices the free R-module on the 

n-simplices of X [3, p. 14]. If (Y, X) is a simplicial pair then R @ (Y, X) will 

denote the quotient simplicial R-module pair (R ~ Y/R ~X,O).  
The homotopy groups of R @ X  are naturally isomorphic to the m o d R  

homology groups of X, and the natural inclusion X ~ R Q X induces a map on 

homotopy which is essentially the Hurewicz homomorphism. There are similar 

relative statements. 

Suppose that f : X ~ Y is an arbitrary map of spaces. The mapping cylinder of 

f, denoted Cyl (f), is defined as the pushout of the diagram 

¢ 
X , Y  

'1 t 
X × A[11 ~ Cyl (f) 

where A[1] is the standard 1-simplex [3, p. 234] and i~ is the inclusion x ~ (x, (1)). 

The alternate inclusion i o : X ~ X  x A[1] given by x ~(x,(0)) induces an 
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isomorphism of X onto a subcomplex Xo of Cyl(f). The collapsed pair 

(Cyl(f)/Xo, Xo/Xo) is by definition Cone(f), the mapping cone of f. Since 

R @Cone(f)  is isomorphic to the quotient simplicial R-module pair 

(R @ Cyi (f)/R @ Xo, 0), the homotopy groups of R (~) Cone (f) fit into the long 
exact sequence 

• . . ~ H ~ ( X ; R ) - ~ H ~ ( Y ; R )  ,Tr ,(R@Cone(f))  ~,H~ , ( X ; R ) ~ . . .  

2.2. LEMMA. For any map f, R (~Cone(f)  is both a Kan complex and an 

R-Bousfield space. Moreover, the natural map Cone (f)---~ R @ Cone (f) induces 

an injection on mod R homology groups. 

PROOF. Since it is a simplicial R-module, R (~ Cone (f) is a Kan complex [6, 

p. 67] which is homotopy equivalent to a product of R-module 

Eilenberg-MacLane spaces [6, p. 106]. By [1, 5.5], R @ Cone (f) is R-Bousfield. 

The last statement of the lemma follows as in [6, p. 97] from the fact that the 

induced map R @Cone(f)--~ R • ( R  @Cone(f))  has a left inverse given by 
evaluating formal sums. 

2.3. R-modification. The path space A(Y,*) of a pointed space (Y,*) is 
defined to be the standard function complex of maps of pairs [6, p. 17] 

A(Y,*) = Horn ((h[1],(O)), (Y,*)). 

As usual, the inclusion ( 1 ) ~  A[1] induces a projection A(Y, *)----~ Y, which is a 

Kan fibration if Y is a Kan complex. 

Given f : X ~ Y, let Y' be the pullback of the square 

Y' , A(R ~) Cone (f)) 

Y , R (~ Cone (f) 

where the right vertical map is path space projection and the bottom map is the 
composite Y-~Cone ( f ) - -~R@Cone( f ) .  Note that the composite X x  

A[1]---~Cone(f)-~ R ~ C o n e ( f )  provides a map X--~A(R @Cone(f))  which 

combines with the original map f to give a map f '  : X --~ Y'. This map f '  is called 

the R-modification of f; it fits into a commutative diagram 

y,  
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The space Y' is just obtained by repairing Y by the extent to which its mod R 

homology differs from that of X. In this process new homological discrepancies 

are usually introduced, but there is a sense in which they are independent of the 

old ones (cf. [2, 3.1, 3.2]). 

2.4. LEMMA. If f' is the R-modification of f, the natural map 
H ,  (Con e (f'); R )--~ H ,  (Con e (f); R ) is zero. 

PROOF. Given f : X--~ Y, let Z be the pullback of the obvious square 

Z , A(R @ Cone (f)) 

1 1 
Cyl (f) ~ R @ Cone (f} 

and let g : X ~ Z be the map which is determined by io : X ~ Cyl (f) and the 

trivial map X---~A(R @Cone(f ) ) .  The maps g and i0 are both inclusions; 

moreover, up to weak homotopy type Z is the same as Y ' =  range(/ ' )  and 

Cyi(f)  is the same as Y. An easy diagram argument reduces the lemma to 

showing that the relative homology map 

H ,  (Z, g(X);  R)--~ H ,  (Cyl (f), io(X); R) 

= H ,  (Cone (f); R) 

is trivial. This follows from the second part of 2.2 and the fact that the evident 

map Z/g(X)--* R @ Cone (f) is explicitly null homotopic, since it lifts to a map 

Z / g ( X ) ~  A(R @ Cone (f)). 

2.5. The long tower Let O be the opposite category of the category of all 

ordinals, that is, O has one object for each ordinal/3 and one morphism a --~/3 

for each a ---/3. A long tower in a category C is a functor F : O ~ C, usually 

written {F(a)}~. A map f : {X,~}~ --~ { Y,,}~ of long towers is a natural transforma- 

tion of functors, with components f,, : X, --~ Y,~. The long tower {X,,}~ is said to 

be augmented by the object X of C if there is a map from the constant long 

tower {X}, into {X,~}.. 

Similarly, a tower {F(a)},<o of length/3 in C is a functor F : O~ --~ C, where Oo 

is the full subcategory of /2  consisting of all ordinals less than/3. Unlike a long 

tower, a tower is a small ( =  set-indexed) diagram; this means that a tower of 

spaces, for instance, has an inverse limit. 

For any space X, define a functorial long tower {X~}~ of spaces, naturally 

augmented by f : X ~ {X~}, in the following inductive say: 
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(2.6) (i) f ~ , : X ~  X,, R is the unique map of X to a one-point space, 

(ii) if a =/3 + 1 is a successor ordinal, then f ,~:X---~X~ is the R- 

modification of fo, 

(iii) if a is a limit ordinal, then f~ : X----~X~. is the natural map of X to 
lim R {X~}~<~. 

2.7. THEOREM. The long tower {Xff}~ is a long R-homology localization tower 

for X in the sense that it has the following properties: 

(i) the spaces X~, a ~ ~ are R-Bousfield, 

(ii) if f : X - - ~ Y  induces an isomorphism H , ( X ; R ) - - * H , ( Y ; R ) ,  then f 

induces homotopy equivalences xR--~ Y~, a E g2, 

(iii) there is some ordinal fl, depending on X, such that for all ct >=/3 the map 

X ~ X~ is, up to homotopy, the Bousfield H ,  ( - ; R )-localization map X --~ XR. 

2.8. REMARK. The inductive construction of (2.6) can be carried out with any 

map g : X - - ~  Y replacing the initial map of X to a point. It seems safe to 

conjecture that up to homotopy this construction always gives, for large enough 

ordinals, the general Bousfield factorization of g into the composite of a mod R 

homology equivalence and an H , (  ; R)-fibration [1, l l . l ] .  

2.9. REMARK. By construction, the long tower {X~}~ has the property that 

for each ordinal a the map X~+~ ~ X~ is a principle fibration with a simplicial 

R-module as fibre. In fact, X~+~ is the pullback of a fibre square 

X~+, > A(R @ Cone (fo)) 

l 1 
X~ , R @ Cone (f~) 

in which the right-hand vertical map is a map of simplicial R-modules. 

Alternatively, if a is a limit ordinal it follows from [4, 4.2] that X~ has the 

homotopy type of the homotopy inverse limit [3, p. 295] of the tower {X~}o<~. In 

this way 2.7 gives a short proof of the following result, which was proved (with 

minor changes) by ad hoc arguments in [4, §5]. 

2.10. COROLLARY. Up to homotopy, the class of R-Bousfield spaces is the 

smallest class of spaces which contains all simplicial R-modules  and is closed 

under arbitrary homotopy inverse limits. 

The fact that the class of R-Bousfield spaces contains the class described in 

2.10 follows from [1: §5, §12]. 
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PROOF OF 2.7. Parts (i) and (ii) of 2.7 are proved by induction on the ordinal 

a. If a is a successor ordinal the statements follow from the fact that the class of 

R-Bousfield spaces is closed under fibration pullbacks [1, 12.7] and the 

observation that if 

[ 
X >X'  

y * > y ,  

is a commutative diagram in which the vertical maps are R-homology equival- 

ences, then the induced map R @Cone(f)-->R@Cone(g) is a homotopy 

equivalence. If a is a limit ordinal, the towers {X~}~<o and { Y~}o<~ are clearly 

fibrant in the sense of [4, §4], so that X~ and Y~ have the homotopy type of 

holim{X~}~<~ and holim{Y~},<,~. The desired statements then follow from the 

homotopy invariance property of homotopy inverse limits [3, p. 28] and the fact 

that the class of R-Bousfield spaces is closed under homotopy inverse limits 

[1, 12.9]. 

The proof of 2.7 (iii) will be given in §5. 

3. Long towers of groups and modules 

The purpose of this section is to show that some algebraic results which are 

well-known for countable towers of R-nilpotent groups and R-nilpotent rr- 

modules [3, III] also hold for long towers of R-Bousfield groups and R- 

Bousfield rr-modules. The principle behind this is that an R-Bousfield group or 

rr-module behaves in some sense alike an R-nilpotent group or rr-module with a 

very long (i.e. possibly transfinite) R-lower central series filtration [2, § 3, § 8]. 

3.1. Preliminaries. Let f : {A~}~ ---> {B~}~ be a map between two long towers 

of objects in a category C. The map f is said to be a pro-isomorphism if for each 

ordinal /3 there is an a >/3 and a map B~ ~ A s such that the diagram 

L 
Ao ~Bo 

commutes. If C is a pointed category (that is, a category with a distinguished 

object * which is both initial and terminal), then the long tower {Ao}~ is said to 
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be pro-trivial if the unique map {* }~ ~ {Ao }~ of the trivial constant long tower 

into {A~}~ is a pro-isomorphism. This is equivalent to the condition that the 

unique map {A~}~---~{*},, be a pro-isomorphism. 

If C is a category of groups or of modules over some ring, then a map 

f:{A~}o---*{Bo}~ of long towers in C is said to be a pro-monomorphism or a 

pro-epimorphism if the long towers {kerf,,},, or {cokerf,,},,, respectively, are 

pro-trivial. (If C is a category of groups, then {cokerf~}~ is a long tower of 

pointed sets.) It is easy to check that in this case f is a pro-isomorphism iff it is 

both a pro-monomorphism and a pro-epimorphism. In fact, all of the elementary 

algebraic properties of towers indexed by the positive integers, including the 

evident analogue of the five lemma [3, p. 75], also hold for long towers in C. 

3.2. THEOREM. Let f : {rc~}~ ---*{cro}~ be a map of long towers of R-Bousfield 

groups. Then f is a pro-isomorphism if the induced map 

{H~(zr~;R)}~--~{H~(o',;R)}~ is a pro-isomorphism for i = 1  and a pro- 

epimorphism for i = 2. 

If {zr,,}~ is a long tower of groups, then a long tower {A~},, of modules over 

{7r~}~ is by definition a long tower of abelian groups such that 

(i) each A~ is a module over zro, and 

(ii) the diagrams 

zr~ x A~ >A~ 

Tr~ X Ao ~ Ao 

commute (where the horizontal maps are action maps and the vertical maps are 

induced by tower maps). 

A m a p f  : {A~}~ -* {B~,}~ of long towers of modules over {Tro}~ is a map of long 

towers of abelian groups such that for each ordinal ~ the component map 

f~ :A~---> B~ is a map of 7r,,-modules. 

3.3. THEOREM. Let {Tr~}~ be a long tower of groups, and let f : {A~}~--* {B~,}~ 

be a map of long towers of modules over {~'~}~. Suppose that, for each ordinal a, 

A~ and B~ are R-Bousfield Try-modules. Then 

(i) the induced map {A~ @R}~---~{B~ (~)R}~, is a pro-isomorphism if the 

induced map {H~ (Tr~ ; Ao @ R )}6 ---> {H; (¢G ; B~ (~ R )}~ is a pro- isomorphism for 

i = 0 and a pro-epimorphism for i = 1, and 

(ii) f itself is a pro-isomorphism if the induced map {A~ @ R }o --* {B~ @ R }~ is 
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a pro-isomorphism and the induced map {/-/o(17", ; A,, * R )}, --+ {H0(rro ; B ,  * R )}0 

is a pro-epimorphism. 

3.4. REMARK. The  symbols  @ and * deno te  tensor  or  torsion produc t  over  

the ring Z of integers.  If rr acts on A, then rr acts on A @ R and A * R via the 

given action on A and the trivial action on R. 

3.5. REMARK. It is not hard  to extract  f rom 3.3 the s t a t emen t  that  f is a 

p ro - i somorph i sm iff the induced m a p  {H~ (rro ; R ; A~)}~ -+ {H~ (rr~ ; R ; Bo)},, is a 

p ro - i somorph i sm for i = 0 and a p r o - e p i m o r p h i s m  for  i = 1. (Here  H~(rr ; R ; A ) 

deno tes  Tor  zl< (R, A) . )  This  is m o r e  in line with 3.2 but less convenient  for  our  

purposes .  

PROOF OF 3.2. The  first step is to p rove  that  f is a p ro -ep imorph i sm.  To  do 

this it is enough to show that  for  any ord ina l /3  there  is an a < / 3  such that  image  

(o'~ + o-8) is conta ined  within image  ([~ : ~r~ --+ trs). 

Let  D~o'~, y C ~ ,  y ¢  0 deno te  the R -derived series subgroups of tr~ relat ive to 

the map  [e [2, 2.6]. These  are def ined inductively by 

D~o'e = o-0, 

D ~+,o'8 = ker  (D~o'8 --~ coker  (H~(rr~ ; R)  -~, H,(D,cr~: R))), y >= 1 

D,o-~ = [") D,o-8, 3' a limit ordinal.  

By [2, 2.11] the image  of the m a p  [~ : rr8 --+ o8 is equal  to D , t r  8 for  sufficiently 

large ordinals  y. It is thus sufficient to show that  for each 3' there  is an ordinal  

a(y )  >/3  such that the image  of o ' , , ~  in o-~ is con ta ined  in D~o'e. 

This is done  by transfinite induction on y. The  case 3' = 1 is trivial. If y = h + 1 

then by protr ivial i ty of {cokerH~(rr~;R)--+H,(o'o;R)}~ it is possible  to find 

a ' > c ~ ( A . )  such that  image(H,(tro,;R)--+H,(cr~t,~;R)) is conta ined  in image  

(H,(rr~(,); R)--+H,(~r~(,j;R)). Let  a ( y ) =  a ' .  If ), is a limit ordinal,  let a ( y ) =  

sup{a(3 . )  : a < y}. It is easy to check that  this choice of the ordinals  a ( y )  has the 

desired proper t ies .  

T o  p rove  that  [ is a p r o - m o n o m o r p h i s m ,  note  that  by the a rgumen t  above  it is 

possible to assume that  the maps  [o : rr,~ --~ o-~ are actually onto,  since o therwise  

{o'o}o could be replaced by the p ro - i somorph ic  tower  { image([ ,  : rr~ ~ o'~)},,. Let  

K~ = kernel( f~ : 7ro ~ o'o). It is enough  to show that  the long tower  {Ko}~ is 

pro-tr ivial ,  or  in o ther  words  that  for each ord ina l /3  there  is an a > / 3  such that  

the m a p  ~:o ~ Ko is trivial. 

Note  that  the long tower  of short  exact  sequences  
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gives rise to a long tower of low dimensional homology exact sequence 

{H, (~-, ; R)}. --~ {H2 (or. ; R ) L  --* {H,)(~'~ ; H,(K. ;R ) )L  

{H, (~-.; R)}o --, {H, (,~o ; R)}o --,0. 

Thus the hypotheses imply that the long tower {Ho(rr. ;H,(K. ;R))}. is pro- 
trivial. 

Given 13, let F~Kt~, y E l'~, y ~  0 denote the R-lower-central-series subgroups of 

K s relative to the conjugation action ofrr o. These are defined inductively as follows 

(cf. [2, §111): 

F I K s "~- K/}~ 

F,+,K~ = ker(r,ro--~ H,,(Tr~; H,(r,K~; R ))), y >-_ l 

F,Ko = f"l F,Ko, Y a limit ordinal. 
A<-/ 

Since ~'~ contains no normal subgroup K such that H(,(Tro ; H,(K ; R )) vanishes [2, 

1.2], it follows that for all sufficiently large ordinals y the subgroup F,Ko of K 0 is 

trivial. Thus it suffices to show that for each , / there  is an a ( 7 )  > 13 such that the 

image of K~(,) in Ko is contained in F,Ko. 

This is done by transfinite induction on Y. The case y = 1 is trivial. If 

7 =-~ + 1, then it is possible to find an ordinal a ' >  a(,~) such that the map 

H,,(~,;  H,(,,o ; R ))--, H,,(~o<~,; H,(K°~); R )) 

is trivial; let a ( y )  = a'. If y is a limit ordinal, let a ( y )  = sup(a(A);X < y). It is 

easy to check that this choice of the ordinals a (y) has the desired properties. 

3.6. LEMMA. Let {Tr~}~ be a long tower of groups, and let {A~}~ be a long tower 

of modules over {~'o}~. Suppose that for each ordinal a, A~ is an R-Bousfield 

~r~-module. Then the long tower {A~L is pro-trivial if and only if the long tower 

{Ho(Tro ; A,  @ R )}0 is pro-trivial. 

PROOF. If R _C Q, then an abelian group A is HR-local iff it is an R-module,  

i.e. iff A @ R  is isomorphic to A. Thus in this case a proof of 3.6 can be 

constructed along the lines of either half of the proof of 3.2, but using instead of 

[2, 1.2] the fact [2, 6.2] that an HZ-local rr-module A contains no submodule K 

such that Ho(~-; K) vanishes. 

If R = Z/pZ,  note that if A is an R-Bousfield and therefore HZ-local 
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7r-module, then A @ R  = coke r (A-L ,A)  is also HZ-local [1, 8.6]. Thus the 

pro-triviality of {Ho(rr,,;A, @ R)}, together with the argument above shows 

that {A~ @ R }, = {H~(A~ ; R)},~ is pro-trivial. Since each A~ is HR-local as an 

abelian group, the desired result follows from an application of 3.2 to the map 

{As }, ~ {0}~. 

PROOF OF 3.3. The proof consists in repeatedly applying 3.6 to show that the 

cokernals and kernals of appropriate long tower maps are pro-trivial. The main 

point to keep in mind is that if f : A --~ B is a map of R-Bousfield r-modules,  

then ke r r  and coker f  are also R-Bousfield r-modules.  This follows from [2, 

1.5, 6.3], except that it must be checked that the cokernal of a map of HR-local 

abelian groups is HR-local. However, this can easily be proved along the lines of 

[1, 8.61. 

4. The Whitehead theorem 

This section contains the proof of the following theorem. 

4.1. THEOREM. Let f :{X~}~---~{Y~}, be a map of long towers of pointed 

R-Bousfield spaces. If f induces pro-isomorphisms 

{H,(X~;R)I~--~{II,(Yo;R)I~ i>-O 

then f induces pro-isomorphisms 

{~-, (Xo)}o --, {~-, (Y~)}o i _->0. 

The following two lemmas are needed to set up an inductive spectral sequence 

argument. 

4.2. LEMMA. Let f:{X~}~--~{Y~}~ be a map of long towers of connected 
pointed spaces, which induces pro-isomorphisms {Tr~X~}~ ~ {Tr~Y,~},,, i >-O. Let 

{A,~}~ be a tower of modules over {~-,Y~}~ (see §3). Then f induces pro- 

isomorphisms 

{H,(X,,;A~)}~---~{H,(Y~,;A,,}. i>=O. 

The statement of the lemma is restricted to pointed connected spaces to avoid 

having to confront what it means to choose a "basepoint" for an arbitrary long 

tower of spaces. Lemma 4.2 is obvious if {Xa}~ and {Y~}~ are long towers of 

Eilenberg-MacLane spaces of type K(rr, n), for some fixed n. The general case is 

treated by forming the induced Postnikov stage maps [6, p. 32] 
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P.f . {P.X~}~ -~{P.Y~}o 

and proving by induction on n that each P,f induces pro-isomorphisms on the 

appropriate homology groups. The induction step depends on looking at the 

map of long towers of Serre spectral sequences induced by 

{K(~r.+,X~. n + I)}~ --~ {K(~r.+, Y~, n + I)}~ 

{e.+,X~ }~ --~ {Pn+l Y~}~ 

i i 
{p.xo}o ~ {p~Yo}o 

and repeatedly applying the "five lemma" [3, p. 75] to pass from pro- 

isomorphisms at E 2 to pro-isomorphisms on the abutment. 

4.3. LEMMA. Let{E~.q(X~) ~ Hp+q(X~;R)}~{E~,q(Y~) ~ Hp+q(Y~;R)}o 

be a map of towers of first quadrant spectral sequences of homological type. If 
H,(f;  R)  is a pro-isomorphism for all n and E2p.q(f) is a pro-isomorphism for 
q < k, then 

(i) E~, k(f) is a pro-isomorphism, and 

(ii) E~,k(f) is a pro-epirnorphism. 

This is stated in [3, p. 92] for towers indexed by the natural numbers, but it 

holds equally well for long towers. 

PROOV OV 4.1. We leave it to the reader to verify that the map 

{Tro(X~)}~--~{Tr0(Y,,)}o is a pro-isomorphism of pointed sets. By passing to 

basepoint components it is then possible to assume that the spaces X~ and Ya 

are all connected. 

The proof proceeds by induction on n < 0 to show that the induced homotopy 

map is a pro-isomorphism for i _-< n. 

If n = 1, consider the map of long towers of rood R homology Serre spectral 
sequences induced by 

{pIX~ }~ ---) {p'y~}~ 

{xo}o -~ {Yo}o 

l l 
{K(~-,Xo, OL -" {K(Tr, Y~, 1)L 
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(Here P'Z denotes the /-connective cover of Z [6, p. 33]). Low dimensional 

exact sequences show that the induced map 

{H, (~',Xo ; R)}~, --~ {H, (zr, Y.; R)}. 

is a pro-isomorphism for i = I and a pro-epimorphism for i = 2. The desired 

statement then follows from 3.2. 

If n > 1, consider the map of long towers of mod R homology Serre spectral 

sequences induced by 

{P"-'X~,Io---.{P"-'Y~.},~ 

{Xo}o --, {Y~L 

{P._,X.}o ---~ {P._, Y~}~ 

If Z is any connected space and A is a module over rr = 7rlZ, then there are 

natural isomorphisms Hi(Z; M)~//~(rr;  M), i = 0, 1. Thus, in connection with 

4.2 and the induction hypothesis, 4.3 shows that the natural map 

{H,(zr,X~ ; zr.X. @ R)}~ --* {H,(zr, Y~,; lr.Y~ @ R)}~. 

is a pro-isomorphism for i = 0 and a pro-epimorphism for i = 1. It is clear from 

4.2 that the pro-isomorphism {zr,X~}~----~ {rr, Y~}o induces pro-isomorphisms 

{H, (~',X.. ; zr. Y~)}. ~ {H,(zr, Y.;  zr.Y~)}.. 

and it follows from [I, 8.8] that each zr.Y~ in R-Bousfield as a zr,X~.-module. 

Thus 3.3 implies that the map {rr .X~@R}.- - , {zr .Y~@R}o is a pro- 

isomorphism. 

This finishes the inductive step if R C Q. Otherwise, another application of 4.2 

and 4.3 provides (somewhat more than) a pro-epimorphism 

{HoOr,X~; H.+,(P"-I X.;  R ))}~ -~{Ho(rr, Y~; Ho+,(P "-' Y~ ; R))}~. 

In view of the universal coefficient epimorphism 

H.+I(p"-I Z ; R )--* 7r, Z * R ---> 0 

valid for any connected space Z, this gives a pro-epimorphism 

{Ho(Tr,X. ; 7r.X,~ * R )},, ---> {Ho(Tr, Y,, ; rr. Y,, * R )}.. 

Now, by the argument above, the desired inductive step follows from 3.3. 
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5. Completion of the proof of 2.7 

It remains to prove 2.7 (iii). By 2.7 (ii) the H , (  - ; R)-localization map X ~  XR 

induces homotopy equivalences X~---~ (XR)~ for all ordinals a, so we can assume 

without loss of generality that X itself is R-Bousfield. It is also convenient to 

assume that X is connected and pointed; the general case can be handled by 

successively choosing basepoints in each connected component of X. 

It follows from 2.4 that the relative homology long towers 

{Hi (Cone (f,~); R)},, i => 0 

are all pro-trivial. By a five lemma argument, this implies that the map 

f : X ~ {X~}~ induces pro-isomorphisms 

{H,(X;R)}~-o{H~(X~;R)}~ (i >-O). 

Thus by 4.1, f also induces pro-isomorphisms 

- ,  (i 0). 

Note that in this application of 4.1 the domain {X}~ is a constant long tower; the 

basepoints in the range spaces X~ are taken to be the images of the given 

basepoint of X. 

Let to be the first infinite ordinal. Choose an increasing countable sequence 

a(i) (i < to) of ordinals as follows. Let a(O)= O. Inductively, for i_- > 0 let 

a ( i  + 1) be some ordinal greater than a(i) such that the dotted arrow 

/ 
/ 

/ 
/ 

/ 
/ 

Z 
~rjX ~ 7rjX~(~) 

exists for all j ~> 0. By the definition of pro-isomorphism, such an ordinal exists 

for any particular f, so that a(i + 1) can be chosen as an appropriate least upper 

bound. 

The collection {X~(,~},<~ is a tower of fibrations, and the natural map 

X--*{X~(,)}~<o, induces pro-isomorphisms on all homotopy groups. It follows 

from [3, p. 251-257] that the map X --* lim{X~0~}~<~ is a homotopy equivalence. 

However, the sequence a(i) (i < w) of ordinals is cofinal [3, p. 317] in the 

category of all ordinals less than/3, where/3 is sup{a( i ) :  i < w}, so that the map 
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R . . ~  • R X~= li_m{X~}~<~ li_m{X~o},<~ is actually an isomorphism. Thus the map 

X ~  X~ is a hom~opy equivalence. 

There is still the problem of showing that for all ordinals y _>-/3 the map 

X ~ X ~  is a homotopy equivalence. This is done by induction on Y. The 

statement for successor ordinals 3' follows easily from the fact that, by definition, 

the R-modification process leaves unchanged up to homotopy any map which is 

an R-homology equivalence. For limit Y, a cofinality argument shows that X~ is 
isomorphic to the inverse limit of a "fibrant" [4, §4] tower {X~}~<~ which is 

constant, up to homotopy. The result then follows from the homotopy invariance 

property of the homotopy inverse limit [3, p. 287] and the fact that the homotopy 

inverse limit agrees with the inverse limit for fibrant towers [4, §4]. 
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