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A WHITEHEAD THEOREM FOR LONG
TOWERS OF SPACES'

BY
E. DROR AND W. G. DWYER'

ABSTRACT

We show that one can construct the universal R-homology isomorphism
K — EX of Bousfield [1] by a transfinite iteration of an elementary homology
correction map. This correction map is essentially the same as the one used
classically to define Adams spectral sequence. This yields a topological charac-
terization of the class of local spaces as the smallest s containing K(A, n)’s and
closed under homotopy inverse limit,

1. Introduction

Suppose that R is a subring of the rational numbers or a finite field of the form
Z/pZ, p prime. In [1] Bousfield showed that any space X has a functorial
R-homology localization ; this is a space Xg together with a map X — Xz which
is terminal, up to homotopy, in the category of all maps X — Y that induce
isomorphisms on mod R homology. This paper proves a ‘““Whitehead theorem”
which is adapted to recognizing inverse limit constructions of Xg. In particular,
the theorem shows that X can be obtained from X by transfinite iteration of an
elementary homology approximation technique.

1.1. Organization of the paper. For background purposes, Section 2 de-
scribes in some detail our proposed construction for Xx. Section 3 contains some
preliminary algebra, and Section 4 has a statement and proof of the Whitehead
theorem itself. The last section shows how the Whitehead theorem can be used
to demonstrate that the construction given in Section 2 actually works.

1.2. REMARK. Section 2 is a straightforward attempt to transpose the algeb-
raic towers of [2, §3, §8] into geometry. A less direct but more sophisticated
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inverse limit construction of X appears in [4]. Our work here ultimately
depends on a small but essential collection of Bousfield’s algebraic lemmas from
[2, §1-2, §6-7].

1.3. Notation and terminology. The word space is used as a synonym for
simplicial set ([S], [6]). The symbol R will always denote a fixed ring of the type
described above; a space X is said to be R-Bousfield if it is H ,(—; R)-local in
the sense of [1, §1], that is, if the natural map X — X is a homotopy
equivalence. Similarly, a group = is called R-Bousfield if it is HR-local in the
sense of [1, 5.1], and a w-module M is R-Bousfield if it is HR-local as an
(abelian) group and HZ-local [1, 5.3] as a #-module.

In these terms, theorem 5.5 of [1] reads that a connected space X is
R-Bousfield iff 7,X is R-Bousfield and the higher homotopy groups of X are
R-Bousfield as 7, X-modules.

2. A construction of X by successive approximation

The idea of the construction will be to start with the simplest possible map (the
map from X to a one-point space) and iteratively modify the range of this map
until an R-homology isomorphism is obtained.

2.1. The Dold-Kan construction. For any space X, R @ X will denote the
mod R Dold-Kan constructon on X, that is, R & X is the simplicial R-module
which, for each n 2 0, has as its set of n-simplices the free R-module on the
n-simplices of X [3, p. 14]. If (Y, X) is a simplicial pair then R @ (Y, X) will
denote the quotient simplicial R-module pair (R Q@ Y/R &® X,0).

The homotopy groups of R & X are naturally isomorphic to the mod R
homology groups of X, and the natural inclusion X - R @ X induces a map on
homotopy which is essentially the Hurewicz homomorphism. There are similar
relative statements.

Suppose that f : X — Y is an arbitrary map of spaces. The mapping cylinder of
f, denoted Cyl(f), is defined as the pushout of the diagram

X— >y

A

X x A[1]—> Cyl(f)

where A[1] is the standard 1-simplex [3, p. 234] and i, is the inclusion x » (x,(1)).
The alternate inclusion iy: X — X X A[l] given by x » (x,(0)) induces an
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isomorphism of X onto a subcomplex X, of Cyl(f). The collapsed pair
(Cyl(f)/ Xo, Xo/Xs) is by definition Cone(f), the mapping cone of f. Since
R @ Cone(f) is isomorphic to the quotient simplicial R-module pair
(R Q Cyl(f)/R & X,,0), the homotopy groups of R ) Cone (f) fit into the long
exact sequence

o H (X3 R)25 H, (Y3 R)—> 7 (R & Cone (f))—> H_i(X; R)—> - - -

2.2. LEmma. For any map f, R ® Cone(f) is both a Kan complex and an
R-Bousfield space. Moreover, the natural map Cone (f)— R & Cone(f) induces
an injection on mod R homology groups.

Proor. Since it is a simplicial R-module, R 0 Cone (f) is a Kan complex [6,
p. 67] which is homotopy equivalent to a product of R-module
Eilenberg-MacLane spaces [6, p. 106]. By [1, 5.5], R ® Cone (f) is R-Bousfield.
The last statement of the lemma follows as in [6, p. 97] from the fact that the
induced map R & Cone(f)— R ® (R & Cone (f)) has a left inverse given by
evaluating formal sums.

2.3. R-modification. The path space A(Y,*) of a pointed space (Y,*) is
defined to be the standard function complex of maps of pairs [6, p. 17]

A(Y,*) = Hom ((A[1},(0)), (Y.*)).

As usual, the inclusion (1) — A[1] induces a projection A(Y,*)— Y, which is a
Kan fibration if Y is a Kan complex.
Given f: X = Y, let Y’ be the pullback of the square

Y’'— A(R ® Cone (f))

l

Y — R ®Cone(f)

where the right vertical map is path space projection and the bottom map is the
composite Y — Cone(f)— R @ Cone(f). Note that the composite X X
A[1]— Cone(f)— R & Cone (f) provides a map X — A(R @ Cone (f)) which
combines with the original map f to give amap f': X — Y". This map f’ is called
the R-modification of f; it fits into a commutative diagram

o

X

™N

Y
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The space Y'is just obtained by repairing Y by the extent to which its mod R
homology differs from that of X. In this process new homological discrepancies
are usually introduced, but there is a sense in which they are independent of the
old ones (cf. {2, 3.1, 3.2]).

24. Lemma, If f' is the R-modification of f, the natural map
H,(Cone(f'); R)— H,(Cone(f); R) is zero.

Proor. Given f: X — Y, let Z be the pullback of the obvious square

Z—> A(R & Cone (f))

l

Cyl(f)— R @ Cone(fy

and let g : X = Z be the map which is determined by i,: X — Cyl(f) and the
trivial map X — A(R @ Cone(f)). The maps g and i, are both inclusions;
moreover, up to weak homotopy type Z is the same as Y'=range(f’) and
Cyl(f) is the same as Y. An easy diagram argument reduces the lemma to
showing that the relative homology map

H,(Z g(X); R)— H, (Cyl(f), io(X); R)
= H, (Cone(f); R)

is trivial. This follows from the second part of 2.2 and the fact that the evident
map Z/g(X)— R @ Cone (f) is explicitly null homotopic, since it lifts to a map
Z/g(X)— A(R ® Cone (f)).

2.5. The long tower. Let 2 be the opposite category of the category of all
ordinals, that is, {2 has one object for each ordinal 8 and one morphism a — 8
for each a = B. A long tower in a category C is a functor F: 2 — C, usually
written {F(a)}.. A map f : {X.}. = {Y.}. of long towers is a natural transforma-
tion of functors, with components f, : X, — Y.. The long tower {X,}. is said to
be augmented by the object X of C if there is a map from the constant long
tower {X}. into {X,}..

Similarly, a tower {F(a)}.<p of length B8 in C is a functor F : {2, — C, where {1
is the full subcategory of (2 consisting of all ordinals less than B. Unlike a long
tower, a tower is a small ( = set-indexed) diagram; this means that a tower of
spaces, for instance, has an inverse limit.

For any space X, define a functorial long tower {XX}. of spaces, naturally
augmented by f: X = {X7}, in the following inductive say:
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(2.6) (1) fo:X— X7 is the unique map of X to a one-point space,

(i) if « =B +1 is a successor ordinal, then f,: X — X% is the R-
modification of fj,

(i) if « is a limit ordinal, then f, : X — X £ is the natural map of X to
i (X P

2.7. THEOREM. The long tower {X £}, is a long R-homology localization tower
for X in the sense that it has the following properties:

(i) the spaces X7, a € (2 are R-Bousfield,

(ii) if f: X —Y induces an isomorphism H, (X;R)— H (Y;R), then f
induces homotopy equivalences X5 — Y&, a € 0,

(iii) there is some ordinal B, depending on X, such that for all « = B the map
X — X% is, up to homotopy, the Bousfield H . (— ; R)-localization map X — Xx.

2.8. REMark. The inductive construction of (2.6) can be carried out with any
map g: X — Y replacing the initial map of X to a point. It seems safe to
conjecture that up to homotopy this construction always gives, for large enough
ordinals, the general Bousfield factorization of g into the composite of a mod R
homology equivalence and an H,( ;R)-fibration [1,11.1].

2.9. REMARK. By construction, the long tower {X £}, has the property that
for each ordinal @ the map XZ,,— X7 is a principle fibration with a simplicial
R-module as fibre. In fact, X{., is the pullback of a fibre square

X&n—> MR & Cone(f.))

l l

X8 — R ®Cone(f.)

in which the right-hand vertical map is a map of simplicial R-modules.
Alternatively, if « is a limit ordinal it follows from {4, 4.2] that X has the
homotopy type of the homotopy inverse limit [3, p. 295] of the tower {X §}5<.. In
this way 2.7 givés a short proof of the following result, which was proved (with
minor changes) by ad hoc arguments in [4, §5].

2.10. CoroLLARY. Up to homotopy, the class of R-Bousfield spaces is the
smallest class of spaces which contains all simplicial R-modules and is closed
under arbitrary homotopy inverse limits.

The fact that the class of R-Bousfield spaces contains the class described in
2.10 follows from [1: §5, §12].
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Proor oF 2.7. Parts (i) and (ii) of 2.7 are proved by induction on the ordinal
a. If a is a successor ordinal the statements follow from the fact that the class of
R-Bousfield spaces is closed under fibration pullbacks [1, 12.7] and the
observation that if

x-1sx

||

Y=Y
is a commutative diagram in which the vertical maps are R-homology equival-
ences, then the induced map R &) Cone(f)—> R ®Cone(g) is a homotopy
equivalence. If « is a limit ordinal, the towers {X3}s<. and { Y §}s<. are clearly
fibrant in the sense of [4, §4], so that X and Y have the homotopy type of
m{x;}}ﬁq and }(’_(_’ET{YE}BW The desired statements then follow from the
homotopy invariance property of homotopy inverse limits [3, p. 28] and the fact
that the class of R-Bousfield spaces is closed under homotopy inverse limits
(1, 12.9)].
The proof of 2.7 (iii) will be given in §5.

3. Long towers of groups and modules

The purpose of this section is to show that some algebraic results which are
well-known for countable towers of R-nilpotent groups and R-nilpotent -
modules [3, III] also hold for long towers of R-Bousfield groups and R-
Bousfield 7-modules. The principle behind this is that an R-Bousfield group or
ar-module behaves in some sense alike an R -nilpotent group or 7-module with a
very long (i.e. possibly transfinite) R -lower central series filtration (2, §3, § 8].

3.1. Preliminaries. Let f:{A.}. — {B.}. be a map between two long towers
of objects in a category C. The map f is said to be a pro-isomorphism if for each
ordinal B there is an @ > and a map B. — A; such that the diagram

fa
A,— B,

|/

As— B

commutes. If C is a pointed category (that is, a category with a distinguished
object * which is both initial and terminal), then the long tower {A.}. is said to
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be pro-trivial if the unique map {*}. — {A.}. of the trivial constant long tower
into {A.}. is a pro-isomorphism. This is equivalent to the condition that the
unique map {A.}. = {*}. be a pro-isomorphism.

If C is a category of groups or of modules over some ring, then a map
f:{A.}e = {B.}. of long towers in C is said to be a pro-monomorphism or a
pro-epimorphism if the long towers {kerf.}. or {cokerf.}., respectively, are
pro-trivial. (If C is a category of groups, then {cokerf,}. is a long tower of
pointed sets.) It is easy to check that in this case f is a pro-isomorphism iff it is
both a pro-monomorphism and a pro-epimorphism. In fact, all of the elementary
algebraic properties of towers indexed by the positive integers, including the
evident analogue of the five lemma [3, p. 75], also hold for long towers in C.

3.2. TueorReM. Let f:{m.}a = {0.}. be a map of long towers of R -Bousfield
groups. Then f is a pro-isomorphism if the induced map
{H,(7a; R)}a = {Hi(0.; R)}. is a pro-isomorphism for i=1 and a pro-
epimorphism for i = 2.

If {m.}. is a long tower of groups, then a long tower {A.}. of modules over
{m.}« is by definition a long tower of abelian groups such that

(i) each A, is a module over =, and

(i) the diagrams

Ta X Ay — A,

| | azp

WBXAB_——)AB

commute (where the horizontal maps are action maps and the vertical maps are
induced by tower maps).

A map f :{A.}. = {B.}. of long towers of modules over {.}. is a map of long
towers of abelian groups such that for each ordinal @ the component map
f.: A, — B, is a map of m,-modules.

3.3. THEOREM. Let {m.}. be a long tower of groups, and let f : {A.}. = {B.}.
be a map of long towers of modules over {m.}.. Suppose that, for each ordinal a,
A, and B, are R-Bousfield m,-modules. Then

(i) the induced map {A. ® R}. = {B. ® R}. is a pro-isomorphism if the
induced map {H:(7. ; Aa @ R)}o = {Hi(7. ; B. & R)}. is a pro-isomorphism for
i =0 and a pro-epimorphism for i =1, and

(ii) fitself is a pro-isomorphism if the induced map {A. ® R}. = {B. @ R}. is
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a pro-isomorphism and the induced map {Ho(7, ; A, * R)}a = {Ho(7, ; B, # R )},
is a pro-epimorphism.

3.4. REmarRk. The symbols 9 and * denote tensor or torsion product over
the ring Z of integers. If 7 acts on A, then 7 actson A @ R and A * R via the
given action on A and the trivial action on R.

3.5. REMARK. It is not hard to extract from 3.3 the statement that f is a
pro-isomorphism iff the induced map {H:(m.; R; Au)}a = {Hi(7.; R; Bo)}a is a
pro-isomorphism for i = 0 and a pro-epimorphism for i = 1. (Here H,(7w; R; A)

Z(w

denotes Tor?"! (R, A).) This is more in line with 3.2 but less convenient for our
purposes.

Proor oF 3.2. The first step is to prove that f is a pro-epimorphism. To do
this it is enough to show that for any ordinal B there is an @ < B such that image
(0. — 03) is contained within image (fs : ms — 0%).

Let D,op, v € £, y# 0 denote the R-derived series subgroups of o, relative to
the map f; [2, 2.6]. These are defined inductively by

Doy = 0y,

D, .05 = ker(D,os — coker (H,(mg; R)— H|(D,05: R))), vyz1

D,og = () Doy, v a limit ordinal.

A<y

By [2, 2.11] the image of the map f, : m; — 05 is equal to D,o, for sufficiently
large ordinals vy. It is thus sufficient to show that for each y there is an ordinal
a(y)> B such that the image of o, in o, is contained in D,o,.

This is done by transfinite induction on y. The case y = listrivial. If y = A + 1
then by protriviality of {coker H,(m.; R)— Hi(o.; R)}. it is possible to find
a'>a(A) such that image (H,(0.; R)— H\(0.u); R)) is contained in image
(Hi(7apy; R)—= H{(Gaw); R)). Let a(y)=a'. If y is a limit ordinal, let a(y) =
sup{a(A): A <y} Itis easy to check that this choice of the ordinals a(y) has the
desired properties.

To prove that f is a pro-monomorphism, note that by the argument above it is
possible to assume that the maps f, : 7. — 0. are actually onto, since otherwise
{0}« could be replaced by the pro-isomorphic tower {image (f. : 7. — 0. )}.. Let
ko = kernel (f, : m. — 0.). It is enough to show that the long tower {k,}. is
pro-trivial, or in other words that for each ordinal 8 there is an a > 8 such that
the map «, — kg is trivial.

Note that the long tower of short exact sequences
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1= {kafe = {7ma}te = {ou}a = 1
gives rise to a long tower of low dimensional homology exact sequence
{Hy(m; R)}o = {H:(0u; R)}a = {Ho(ma; Hi (k. R))}a —
{H(7.; R)}. = {H(0.; R)}. > 0.

Thus the hypotheses imply that the long tower {Hy(m.; Hi(x.; R))}. is pro-
trivial.

Given B, let I'ykg, ¥y € £2, ¥ # 0 denote the R-lower-central-series subgroups of
kg relative to the conjugation action of ms. These are defined inductively as follows

(cf. [2, §11)):
FIKB = Kg,

Fy+]K!3 = ker (Fng - H()(773 ; Hl(FyKB; R))), Y = 1

[kg = M kg, v a limit ordinal.
A<y

Since m, contains no normal subgroup k such that Hy(mgs; Hi(x ; R)) vanishes [2,
1.2}, it follows that for all sufficiently large ordinals y the subgroup I',ks of «; is
trivial. Thus it suffices to show that for each y there is an a(y)> B such that the
image of k., in kg is contained in I' k.

This is done by transfinite induction on y. The case y =1 is trivial. If
y = A +1, then it is possible to find an ordinal a’> a(A) such that the map

Hy(7.; Hi(ka; R)) = Ho(Tagy; Hi(Kan); R )

is trivial; let a(y)=a'. If y is a limit ordinal, let a(y)=sup(a({A); A <y).Itis
easy to check that this choice of the ordinals () has the desired properties.

3.6. Lemma. Let {m.}. be a long tower of groups, and let {A.}. be a long tower
of modules over {m.}.. Suppose that for each ordinal a, A. is an R-Bousfield
mo-module. Then the long tower {A.}. is pro-trivial if and only if the long tower
{Ho(7.; Aa @ R)}. is pro-trivial.

Proor. If R C Q, then an abelian group A is HR-local iff it is an R-module,
ie. iff AQ@R is isomorphic to A. Thus in this case a proof of 3.6 can be
constructed along the lines of either half of the proof of 3.2, but using instead of
[2, 1.2] the fact [2, 6.2] that an HZ-local w-module A contains no submodule «
such that Hy(7; k) vanishes.

If R=1Z/pZ, note that if A is an R-Bousfield and therefore HZ-local
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m-module, then A ® R = coker(A - A) is also HZ-local (1, 8.6]. Thus the
pro-triviality of {Ho(m.; A. @ R)}. together with the argument above shows
that {A, ® R}. = {H\(A,; R)}, is pro-trivial. Since each A, is HR-local as an
abelian group, the desired result follows from an application of 3.2 to the map
{A.}a = {0}

Proor orF 3.3. The proof consists in repeatedly applying 3.6 to show that the
cokernals and kernals of appropriate long tower maps are pro-trivial. The main
point to keep in mind is that if f: A — B is a map of R-Bousfield w-modules,
then ker f and coker f are also R-Bousfield 7-modules. This follows from [2,
1.5, 6.3], except that it must be checked that the cokernal of a map of HR-local
abelian groups is HR -local. However, this can easily be proved along the lines of
(1, 8.6].

4. The Whitehead theorem
This section contains the proof of the following theorem.

4.1. TueoreM. Let f:{X.}a = {Y.}. be a map of long towers of pointed
R-Bousfield spaces. If f induces pro-isomorphisms

{H(X.; R)la > {H(Y.;;R)}.  i20
then f induces pro-isomorphisms
{m (X e = {m (Yo )la i=0.

The following two lemmas are needed to set up an inductive spectral sequence
argument.

42, Lemma. Let f:{X,}.—{Y.}. be a map of long towers of connected
pointed spaces, which induces pro-isomorphisms {mX.,}. = {mY.}., i 20. Let
{A.}. be a tower of modules over {m Y,}. (see §3). Then f induces pro-
isomorphisms

{H(X.; Ao)la > {Hi(Ya; Auta iz0.

The statement of the lemma is restricted to pointed connected spaces to avoid
having to confront what it means to choose a “‘basepoint” for an arbitrary long
tower of spaces. Lemma 4.2 is obvious if {X.}. and {Y.}. are long towers of
Eilenberg—MacLane spaces of type K (1, n), for some fixed n. The general case is
treated by forming the induced Postnikov stage maps [6, p. 32]
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Pf:{P.X.}. = {P.Y.}

and proving by induction on n that each P.f induces pro-isomorphisms on the
appropriate homology groups. The induction step depends on looking at the
map of long towers of Serre spectral sequences induced by

{K(mns1 Xoyn + D} = {K(m,01 Yo, 0 + 1)},

l

{Pn+1Xu}a = {P.aY.)a

{P.Xa}e - {P.Y.}

and repeatedly applying the “five lemma” [3, p. 75] to pass from pro-
isomorphisms at E’ to pro-isomorphisms on the abutment.

43. Lemma.  Let{E2,(X.) > Hy.q (Xo; R)la D {E2(Y.) S Houy (Ya; R)
be a map of towers of first quadrant spectral sequences of homological type. If
H,(f; R) is a pro-isomorphism for all n and E}(f) is a pro-isomorphism for
q <k, then

(i) E.«(f) is a pro-isomorphism, and

(i) E1.(f) is a pro-epimorphism.

This is stated in [3, p. 92] for towers indexed by the natural numbers, but it
holds equally well for long towers.

Proor ofF 4.1. We leave it to the reader to verify that the map
{me(Xo)}a = {mo( Yo )} is a pro-isomorphism of pointed sets. By passing to
basepoint components it is then possible to assume that the spaces X, and Y,
are all connected.

The proof proceeds by induction on n < 0 to show that the induced homotopy
map is a pro-isomorphism for i = n.

If n =1, consider the map of long towers of mod R homology Serre spectral
sequences induced by

{P'X.}l. —{P'VY.l

{Xata - {Ya}a

!

{K(m X, D}a = {K(7:Ys 1)}
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(Here P'Z denotes the i-connective cover of Z [6, p. 33]). Low dimensional
exact sequences show that the induced map

{H(TrlXa 5 R)}a —){Hn‘(ﬂ'l Y,; R)}a

is a pro-isomorphism for i =1 and a pro-epimorphism for i = 2. The desired
statement then follows from 3.2.

If n > 1, consider the map of long towers of mod R homology Serre spectral
sequences induced by

{P"'X}e = {P" ' Yo}a

{X}e — {Yiha

l

{Pn—lXa}a _){Pn—l Ya}a

If Z is any connected space and A is a module over 7 = 7,Z, then there are
natural isomorphisms H;(Z; M)~ H,(m; M), i =0, 1. Thus, in connection with
4.2 and the induction hypothesis, 4.3 shows that the natural map

{H(m X.; m.Xo @ R)}o = {Hi(m Yo, m Y. Q R}

is a pro-isomorphism for i = 0 and a pro-epimorphism for i = 1. It is clear from
4.2 that the pro-isomorphism {7, X,}, = {7, Y.}. induces pro-isomorphisms

{H("TlXa; ﬂnYa )}tx - {I-II(T’.‘ Yﬂ; ‘”‘"Ya)}a

and it follows from {1, 8.8] that each 7Y, in R-Bousfield as a 7,X,-module.
Thus 3.3 implies that the map {mX.® R}.—=>{mY.®R}. is a pro-
isomorphism,

This finishes the inductive step if R C Q. Otherwise, another application of 4.2
and 4.3 provides (somewhat more than) a pro-epimorphism

{Ho(ﬂ',Xa;H,,H(P"_'XQ;R))}‘, —{Ho(m Y.; Hnu(P"_] Y.; R))},,.
In view of the universal coefficient epimorphism
H,.(P""'Z;R)>» mZ*R —0
valid for any connected space Z, this gives a pro-epimorphism
{Ho(m Xo; m X, * R)}a = {Ho(m Yo; 7, Yo # R}

Now, by the argument above, the desired inductive step follows from 3.3.
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5. Completion of the proof of 2.7

It remains to prove 2.7 (iii). By 2.7 (ii) the H (- ; R)-localization map X — Xz
induces homotopy equivalences X 5 — (Xz )« for all ordinals «, so we can assume
without loss of generality that X itself is R-Bousfield. It is also convenient to
assume that X is connected and pointed; the general case can be handled by
successively choosing basepoints in each connected component of X.

It follows from 2.4 that the relative homology long towers

{H (Cone(f.);R)}e  iZ0

are all pro-trivial. By a five lemma argument, this implies that the map
f: X —{X%}, induces pro-isomorphisms

{H(X; R)l« > {H{(XS5R) (i20)
Thus by 4.1, f also induces pro-isomorphisms
{(mX}. > {m X3  (iz0).

Note that in this application of 4.1 the domain {X}, is a constant long tower; the
basepoints in the range spaces X are taken to be the images of the given
basepoint of X.

Let w be the first infinite ordinal. Choose an increasing countable sequence
a(i) (i <w) of ordinals as follows. Let «(0)=0. Inductively, for i =0 let
a(i + 1) be some ordinal greater than a (i) such that the dotted arrow

R
7TjX —> 7T,'Xu(i+1)

/
/
/
/
/
/
/
/

R
mX —— mXaw

exists for all j =z 0. By the definition of pro-isomorphism, such an ordinal exists
for any particular j, so that a(i + 1) can be chosen as an appropriate least upper
bound.

The collection {X 5}« is a tower of fibrations, and the natural map
X —{XZu}i<o induces pro-isomorphisms on all homotopy groups. It follows
from [3, p. 251-257] that the map X — l(iE{Xf(,-)}K,,, is a homotopy equivalence.
However, the sequence a(i) (i <w) of ordinals is cofinal [3, p. 317] in the
category of all ordinals less than B3, where B is sup{a(i): i < w}, so that the map
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X5 =1lim {X5Yacp— ](i_[_n{X:(i)}i<w is actually an isomorphism. Thus the map
X — X§ is a homotopy equivalence.

There is still the problem of showing that for all ordinals y = 8 the map
X — X% is a homotopy equivalence. This is done by induction on y. The
statement for successor ordinals y follows easily from the fact that, by definition,
the R-modification process leaves unchanged up to homotopy any map which is
an R-homology equivalence. For limit v, a cofinality argument shows that X7 is
isomorphic to the inverse limit of a “fibrant” [4, §4] tower {X £}sz.<, which is
constant, up to homotopy. The result then follows from the homotopy invariance
property of the homotopy inverse limit [3, p. 287} and the fact that the homotopy
inverse limit agrees with the inverse limit for fibrant towers [4, §4].
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